We are interested in how brain cells communicate with each other in the normal brain, and how the communication changes in epilepsy.
Postdoctoral fellows and graduate students in the lab employ closely integrated, cutting-edge experimental and computational modeling techniques to understand normal and epilepsy-related plasticity in neuronal networks. The techniques include simultaneous patch clamp recordings from rigorously identified interneurons and principal cells, in vivo recordings and functional imaging, closed-loop optogenetics, behavioral methods, and biologically highly realistic large-scale supercomputational modeling approaches.
Key Research Areas:
Inhibition, synaptic plasticity, cannabinoids, neuronal microcircuits, in vivo imaging, electrophysiology, computational modeling