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SUMMARY

Although the hippocampus is critical to episodic
memory, neuronal representations supporting this
role, especially relating to nonspatial information,
remain elusive. Here, we investigated rate and tem-
poral coding of hippocampal CA1 neurons in rats
performing a cue-combination task that requires
the integration of sequentially provided sound and
odor cues. The majority of CA1 neurons displayed
sensory cue-, combination-, or choice-specific (sim-
ply, ‘‘event’’-specific) elevated discharge activities,
which were sustained throughout the event period.
These event cells underwent transient theta phase
precession at event onset, followed by sustained
phase locking to the early theta phases. As a result
of this unique single neuron behavior, the theta
sequences of CA1 cell assemblies of the event
sequences had discrete representations. These re-
sults help to update the conceptual framework for
space encoding toward a more general model of
episodic event representations in the hippocampus.

INTRODUCTION

The hippocampus is fundamental for the neuronal encoding of

episodic memory and spatial navigation (O’Keefe and Nadel,

1978; Tulving andMarkowitsch, 1998; Burgess et al., 2002; Leut-

geb et al., 2005), both of which consist of sequential representa-

tions of events or locations. These sequences involve both rate

and temporal coding of information across the ensembles of

active neurons. Rate coding takes the form of receptive fields

of locations (i.e., place fields; O’Keefe and Dostrovsky, 1971),

items (Wood et al., 1999; Quiroga et al., 2005), or time (Pastal-

kova et al., 2008; MacDonald et al., 2011; Kraus et al., 2013),

while temporal coding can be seen in the phases of spike se-

quences on concurrent theta cycles, which shift as a function

of distance relative to the center of the receptive field (i.e., phase

precession; O’Keefe and Recce, 1993; Huxter et al., 2003; Buz-

sáki, 2002). With these two forms of coding, hippocampal cell
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assemblies generate sequential structures across single theta

cycles, termed theta sequences, which compressively represent

sequences of past, current, and future positions (Skaggs et al.,

1996; Dragoi and Buzsáki, 2006; Foster andWilson, 2007). How-

ever, the mechanisms of theta sequence formation remain

largely unknown (Mehta et al., 2002; Harvey et al., 2009; Royer

et al., 2012; Wang et al., 2015; Feng et al., 2015; Middleton

and McHugh, 2016).

Recent studies demonstrated that hippocampal theta se-

quences can reflect optic-flow signals (Terrazas et al., 2005;

Cei et al., 2014), motion speed information (Geisler et al.,

2007), and intentions of goal-directions (Wikenheiser and Re-

dish, 2015; Pastalkova et al., 2008). Further, theta phase preces-

sion can be observed even in the absence of spatial movement

(Harris et al., 2002; Pastalkova et al., 2008; Lenck-Santini et al.,

2008; Takahashi et al., 2014). These observations indicate that

theta sequences during spatial navigation might reflect the dy-

namic integration of multiple types of information including

external cues, locomotion, and internal metrics of the animal

(Feng et al., 2015). This predicts that information integration is

essential for updating internal models of the current situation

and reorganizing the temporal structure of cell assemblies within

theta cycles (Tsodyks et al., 1996; Lisman, 2005; Hasselmo,

2005; McNaughton et al., 2006; Foster and Knierim, 2012). To

test this hypothesis, it is crucial to control the timing of informa-

tion updating. However, in spatial navigation or time perception

tasks, this is difficult due to the continuous nature of space

and time.

To address this, we developed a decision-making task that

requires the integration of nonspatial information. In this task,

the rat’s correct response is determined by a combination of

two sensory cues (sound and odor). The key feature of this

task is precise control of the timing of information updating by

isolating two unique external inputs and sequencing the periods

of the stimuli and choice actions. We found that many CA1

neurons showed stimulus-specific firing activities mostly sus-

tained during the stimulus presentation period. Stimulus-specific

cells demonstrated transient theta phase precession following

stimulus onset but then became locked to early theta phases

during the remainder of the stimulus presentation period. In

consequence, the theta sequences of stimulus-specific cells

had segmented and discrete representations. Our results indi-

cate that information updating is essential for theta sequence
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(A) A sound cue was presented during the period

0�3.0 s from trial onset, followed by an odor cue

presented during the period 1.5�4.5 s. After the

odor offset, the left and right levers moved to an

accessible position, allowing the rat to perform a

choice action. Water reward was provided from the

tip of the lever following a correct choice.

(B) Table of correct choices and combination

patterns of sound and odor cues.
formation in the hippocampus. We hypothesize that the hippo-

campus may employ a common computational framework for

processing sequence information of both spatial navigation

and episodic memory.

RESULTS

Rats were trained in a cue-combination decision-making task

requiring the integration of sound and odor cues associated

with left or right lever pulls under a head-restrained condition

(Figure 1; Figure S1; Movie S1; STAR Methods). The correct

choice (left or right lever) was determined by a combination

pattern of sound (sound X or Y) and odor (odor A or B) cues in

each trial. A sound cue was presented during the period of

0�3.0 s from trial onset, and an odor cue was presented during

the period of 1.5�4.5 s. After offset of the odor cue, the left and

right levers moved to an accessible position to allow the rat to

make a choice action, that is, pulling the left or right lever to

receive water drops provided from the tip of the lever (Isomura

et al., 2009; Kimura et al., 2012) as a reward.

Rate Coding in CA1 for Integration of Nonspatial
Information
We recorded multiple extracellular single units from hippo-

campal CA1 in four rats during the cue-combination task using

high-density silicon probes (Table S1; STAR Methods; Fujisawa

et al., 2008). Units were categorized as putative pyramidal neu-

rons or interneurons based on the shapes of their waveforms

and firing rates (Figure S1; Csicsvari et al., 1998). Units whose

peak firing rate in the trials was greater than 8 Hz were used

for further analysis (n = 754 units for putative pyramidal cells,

n = 504 units for putative interneurons, in a total of 34 sessions).

To assess the stimulus- or choice-selective firing activities

of CA1 single neurons in the task, we compared peri-stimulus

time histograms (PSTHs) of the discharge activities of single

neurons across different conditions during single sessions.

First, we tested odor-cue-selective firing effects (Figures 2A

and 2B). A large number of pyramidal neurons showed odor-

selective elevated activity during the odor presentation period

(1.5�4.5 s). Statistical tests with permutation methods (Fig-

ure S2; STAR Methods; Fujisawa et al., 2008) revealed that the

firing rate of 51.6% of pyramidal cells had significant modulation
during the odor-presenting period (1.5�4.5 s) (p < 0.05; Fig-

ure 2B). Next, we estimated sound-cue-selective firing effects.

Some neurons showed sound-selective activity with significant

differences of PSTHs in the two conditions, but the total ratio

of the significant cells was much lower than that of odor-cue-se-

lective neurons (12.1% for sound presentation period 0�3sec;

4.5% for solely sound presentation period 0�1.5sec; Figures

2C and 2D). Finally, we assessed choice-selective firing effects

and found that 74.5% of pyramidal cells had significantly modu-

lated discharge rates (4.5�6 s) (p < 0.05; Figures 2E and 2F).

Many interneurons also showed sound-, odor-, or choice-selec-

tive firing activities (Figure S3). These results indicate that CA1

neurons have stimulus-associated representations of sensory

cues or choices in a nonspatial decision-making task.

To address whether CA1 neurons represented integrated in-

formation, in addition to simple sensory or motor information,

we investigated the combination-selective firing activity in the

task (Figures 3A and 3B; Figure S4). Comparisons of PSTHs of

the single neurons across four combination conditions revealed

that 20.3% of pyramidal neurons showed robust combination-

selective sustained activities in the trials (p < 0.05; permutation

tests were applied to compare most- versus 2nd-most-, most-

versus 3rd-most-, andmost- versus least-preferred combination

trials. Bonferroni correction was applied for each comparison.

See STAR Methods.). Note that the sustained activity of combi-

nation-selective neurons often outlasted not only the period of

concurrent presentation of the sound and odor cues (1.5�3 s)

but also the period of only odor cue presentation (3�4.5 s),

indicating that combination-selective neurons did not merely

represent multimodal (sound and odor) sensory stimuli but rather

the conjunctive information of the two sensory cues associated

with choice.

To assess the population activity of CA1 pyramidal cells

during the task, auto-correlation of the population vectors in

each combination condition was computed (Figure 3C; Figure S5;

STAR Methods; Gothard et al., 1996). The population activities

were clearly segmented in three periods, namely, solely sound-

presenting period (0�1.5 s), odor-presenting period (1.5�4.5 s),

and choice period (4.5�6 s), demonstrating that the stimulus-

orchoice-selectivesustainedactivity in theseperiods issupported

on the population level. To assess similarities and differences of

population activities in different conditions, cross-correlations of
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Figure 2. Odor-, Sound-, or Choice-Selective Firing Activity of Single CA1 Neurons

(A) Firing patterns of a representative odor-selective neuron. Top, raster plots of each combination condition. Bottom, PSTHs of odor A (black; combinations

X-A-L and Y-A-R) and odor B (red; X-B-R and Y-B-L). Red line above PSHTs shows a segment with significantly higher firing rates during odor-B trials (p < 0.05;

permutation test; see STAR Methods; Figure S2).

(B) Firing patterns of CA1 pyramidal neurons during preferred (first column) and nonpreferred (second column) odor trials (n = 754 units; the same set of neurons

was used in D and F). Each row represents the PSTH of a single neuron. Color scale represents firing rate of each neuron (red represents max firing rate of each

neuron and blue represents 0 Hz). Neurons were ordered by the time of their peak firing rates. Third column shows segments with significantly higher discharge

rates in odor-A (red) or odor-B (blue) trials.

(C) Firing patterns of a representative sound-selective neuron.

(legend continued on next page)

1250 Neuron 94, 1248–1262, June 21, 2017



the population vectors across different combination conditions

were also computed (Figure 3C; Figure S5C). In the odor-presen-

ting period (1.5�4.5 s), the population activities of each combina-

tion condition were similar to those of same-odor combina-

tion conditions (‘‘same-odor counterparts’’) (Figure S5D). In the

choice period (4.5�6 s), population activities were similar to those

of same-choice conditions (‘‘same-choice counterparts’’) (Fig-

ure S5E). Otherwise, auto-correlation was significantly higher

than cross-correlations (Figures S5D and S5E).

We also compared the neuronal firing patterns between cor-

rect and error trials (Figure 3D; Figure S5). Cross-correlations

of population vectors between correct and error trials in same

or different conditions were always lower than auto-correlations

of population vectors in correct trials (Figure 3D; Figures S5D

and S5E), though the overall mean firing rates of neurons were

not different (Figure S5B).

Transient Phase Precession Followed by Phase Locking
to Early Theta Phase
During the task, the simultaneously recorded local field potential

(LFP) was dominated by a robust theta frequency (5–12 Hz)

oscillation (Figure S6A). The spiking of 91.4% of pyramidal and

99.8% of interneurons was significantly phase-modulated by

the theta oscillation (p < 0.01, Rayleigh test; Figure S6B). We

analyzed the phase-time relationships of single neurons to check

for the presence of theta phase precession as a function of time

from trial onset. With our criteria (Figure S6C; STAR Methods),

62.6% of pyramidal neurons demonstrated phase precession

in at least one of the combination conditions during the task trials

(Figure S6D).

Next, we assessed the relationship of stimulus- or choice-se-

lective firing rate increases with theta phase precession. We first

compared phase-time relationships in different odor conditions

in odor-selective neurons (n = 152 units) and observed robust

theta phase precession in the preferred-odor trials, but not in

the nonpreferred-odor trials (Figures 4A and 4B; Figures S6E

and S7A). Permutation tests were applied to determine the sig-

nificant differences of the theta phases between preferred- and

nonpreferred-odor trials and revealed that 91.4%of the odor-se-

lective cells showed significant differences in the theta phase

shift between preferred- and nonpreferred-odor trials during

the odor-presenting period (1.5�4.5 s) (Figure 4B). Importantly,

following this transient phase precession (Figure S6H), these

neurons with elevated activity became locked to descending

phases (0�–180�) of theta in the preferred-odor trials (Figure S7A).
We ruled out the possibility that the absence of phase precession

in nonpreferred trials was because theta phase precession

could not be detected due to lower firing rates, by using a

random resampling method (Figure S8). We next analyzed the

phase-time relationships in choice-selective neurons (n = 222

units) during the choice period (4.5�6 s) and found that 85.1%

of neurons showed a significant phase shift in preferred-choice
(D) Firing patterns of CA1 pyramidal neurons during preferred (first column) and n

significantly higher discharge rates in sound-X (rad) or sound-Y (blue) trials.

(E) Firing patterns of a representative choice-selective neuron.

(F) Firing patterns of CA1 pyramidal neurons during preferred (first column) and n

significantly higher discharge rates in choice-L (red) or choice-R (blue) trials.
trials compared to nonpreferred-choice ones (Figures 4C and

4D; Figures S6F and S7B). We also tested combination-selective

neurons (n = 72 units) during odor-presenting periods and found

that 56.9% of neurons had a significant phase shift between

most-preferred combination trials and other combination trials

(Figures 4E and 4F; Figures S6G and S7C).

In contrast, interneuronsdidnot showphaseprecessionduring

the trials. However, the stimulus-, choice-, or combination-selec-

tive interneurons showed a slight but significant phase shift in

preferred trials compared to nonpreferred trials (Figure S9).

Theta Sequence Generation in the Cue-
Combination Task
Theta phase precession of single neurons does not always guar-

antee the concurrent presence of theta sequences of cell assem-

blies (Feng et al., 2015; Middleton and McHugh, 2016). Thus, to

address whether theta sequences were present in the task, we

investigated the temporal structure of spike sequences in single

theta cycles. First, pairwise analysis of theta sequences in the tri-

als was performed (Dragoi and Buzsáki, 2006). If theta sequence

is present in spatial navigation, the distance of place fields of a

neuronal pair should be reflected in the distance of spiking

phases of them in single theta cycles, which can be estimated

by cross-correlation analysis in single trials (Dragoi and Buzsáki,

2006). We applied this pairwise analysis to assess whether the

difference of PSTH peak times of a neuronal pair was reflected

in the difference of spiking theta phases (STAR Methods). Fig-

ure 5A shows three example neurons simultaneously recorded

in a single session. CCGs of spike times of the pair neurons dur-

ing the trials revealed strong thetamodulation on the interactions

of these units. Moreover, the shifts of peak times of CCGs

were correlated with the differences of the peak times of the

PSTHs of the pairs (Figure 5B), indicating that the sequence

activities of firing rates of the neurons were robustly compressed

in single theta cycles. Group analysis of neuronal pairs revealed

that the CCG peak shifts had a significant positive correla-

tion with peak-time differences of firing rates of the pairs (Fig-

ure 5C; n = 4585 pairs; coefficient of determination R2 = 0.18;

p < 0.001; see STARMethods), suggesting the presence of theta

sequences in the cue-combination task.

We also investigated the theta sequences of cell assemblies in

the trials using a Bayesian decoding technique (Zhang et al.,

1998; Davidson et al., 2009; Feng et al., 2015). The probability

densities of time information were reconstructed from simulta-

neously recorded pyramidal cell activities at every 5-ms time

step in each trial (Figure S10A; STAR Methods). Figure 6A repre-

sents the reconstructed time information at each time point in a

single example trial. Then, we aligned the reconstructed time in-

formation with concurrent theta phases (Figure S10A). The prob-

ability densities of the reconstructed time at each theta phase

(Figures 6B and 6C) demonstrated robust theta sequence for-

mation. On descending phases of theta (0�–180�), the decoded
onpreferred (second column) sound trials. Third column shows segments with

onpreferred (second column) choice trials. Third column shows segments with
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probability densities of time reflected the period during which the

spikes were sampled. On the other hand, on ascending phases

of theta (180�–360�), decoded probability densities of time re-

flected future task sequences, in the sampling period of 0 to

4.5 s. A crucial difference between these sequences and those

observed during spatial navigation (e.g., Feng et al., 2015) is

that our sequences are not continuous but rather discrete and

segmented.

We next examined whether the observed theta sequences

included information reflecting the current combination condi-

tions and future choices in addition to the time from trial

onsets. The probability densities of time and combination,

i.e., P (time, combination j spikes), were estimated from spikes

(sampled in the time period 3�4.5 s) recorded during correctly

answered trials (Figure 6D; Figure S10B; STAR Methods). Infor-

mation of the combination conditions for current trials was

correctly represented on the descending phases of theta (Fig-

ure 6E), while information of future choice directions was repre-

sented on the ascending phases (Figure 6F). On the other hand,

the decoding results of probability densities of time and combi-

nation from spikes in error trials showed that wrong combina-

tions were represented on descending phases (Figure 6E)

and that the wrong choices were represented on ascending

phases (Figure 6F). Note that the probability densities in the

error trials on the ascending phases were highest in same-

odor counterpart combinations (i.e., odor was correctly de-

coded but sound was incorrect; Figure 6E), implying that

the auditory cue was either miscoded or ignored in the error

trials (Hampson et al., 2004). These results indicate that the

information sequences representing both current combination

conditions and future choice actions were robustly compressed

within theta cycles.

Changing the Temporal Order of Cue Stimuli
Finally, in order to investigate whether theta sequences reflect

changes in the order of the event sequences, we switched the

presentation order of sound and odor stimulations without

changing the combination-choice contingency (Figure 7A; Table

S1). In the new stimulus order sessions, an odor cue was pre-

sented during the period of 0�3.0 s from trial onset, and a sound

cue was presented during the period of 1.5�4.5 s. In the first day

of this switch, the task performance of the rats was decreased to

around 50% (Figure S11A), and the neuronal ensemble activities

were partially ‘‘remapped’’ (Figures S11B–S11F). However, after

a few days of training, the rats adapted to the new presentation

order and performed the task well (Figure S11A).
Figure 3. Combination-Selective Firing Activity of Single CA1 Neurons

(A) Firing patterns of four representative combination-selective neurons. Lines abo

preferred combination trials (p < 0.05; permutation tests were applied to compa

preferred combination trials. Bonferroni correction was applied for each compar

(B) Firing patterns of pyramidal neurons in most-preferred, 2nd-most-preferred,

combination trials (n = 754 units; the same set of neurons as shown in Figure 2B w

preferred combinations. Fifth column shows segments with significantly higher d

(C) Auto-correlation and cross-correlations of population vector matrices of com

combinations,’’ ‘‘same-choice counterparts,’’ ‘‘same-odor counterparts,’’ and ‘‘s

(D) Cross-correlations of population vector matrices between correct and error tria

Figure S5.
Figure 7 shows the rate and temporal coding of odor-, choice-,

and combination-selective neurons in the sessions with the new

stimulus order (Table S1). Here, the odor-selective neurons had

phase precession around the odor cue onsets (Figures 7B and

7C). On the other hand, the combination-selective neurons ex-

hibited phase precession around the onset of simultaneous pre-

sentations of odor and sound (Figures 7F and 7G), identical to

what we observed under the initial task conditions (Figure 4).

The choice-selective neurons also showed features similar to

those recorded prior to the order switching (Figures 7D and

7E). Pairwise analysis of theta sequences revealed that correla-

tion of the peak-time shifts of CCGs and peak-time differences of

the PSTHs of neuronal pairs was also preserved after order

switching (Figure 7H; n = 994 pairs; R2 = 0.13; p < 0.001). A

Bayesian decoding analysis also demonstrated that the theta

sequences included the correct combination and choice infor-

mation in correct trials (Figures 7I and 7J). Theta sequences in

error trials included same-odor counterpart combination and

wrong choice information (Figures 7I and 7J), as similar to those

before switching (Figures 6E and 6F). These results indicate that

theta sequences can be flexibly reorganized to reflect the order

of event sequences.

DISCUSSION

In this study, we demonstrate that CA1 pyramidal cells employ

both rate and temporal coding to represent discrete, nonspatial

event sequences. The cue-combination task under head-res-

trained conditions enabled us to control the onset and offset of

sound and odor cues and the timing of information integration.

We found that a large number of CA1 neurons showed cue-,

combination-, or choice-specific (in short, ‘‘event’’-specific) sus-

tained activity during trials, which accompanied transient theta

phase precession followed by sustained phase locking to early

theta phases during specific events. As a result, the theta oscil-

lation temporally organized CA1 cell assemblies into discrete

event sequences (Figure 8).

Hippocampal Representations for Spatial and
Nonspatial Information
The cognitivemap theory states that the hippocampus organizes

internal maps representing the external world (Tolman, 1948;

O’Keefe and Nadel, 1978). The majority of studies focused on

place cells (O’Keefe and Dostrovsky, 1971; Wills et al., 2005;

Leutgeb et al., 2005; McNaughton et al., 2006) and their

ensemble dynamics (O’Keefe and Recce, 1993; Skaggs et al.,
ve PSTHs represent segments with significantly higher firing rates duringmost-

re most- versus 2nd-most-, most- versus 3rd-most-, and most versus least-

ison. Line colors represent most-preferred combination.).

3rd-most-preferred, and least-preferred (first to fourth column, respectively)

ere used). Neurons were ordered by the time of their peak firing rates in most-

ischarge rates in most-preferred combination trials.

bination conditions. The procedures of the analysis and meanings of ‘‘same

ame-sound counterparts’’ are described in Figure S5 and STAR Methods.

ls. x axis represents the time for error trials and y axis for correct trials. See also
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Figure 4. Temporal and Rate Coding of Single Pyramidal Neurons during the Cue-Combination Task

(A) Firing rates and theta phases of a representative odor-selective neuron. Left, raster plots and PSTHs. Right top, theta phase plots as a function of time from

stimulus onset. Each dot represents an action potential. Right bottom, mean theta phases as a function of time during odor-A (black) and odor-B (red; preferred)

trials. Red lines above PSHTs and phase plots show segments with significantly higher firing rates and with significant phase differences during preferred trials,

respectively (p < 0.05; permutation test; same for (C).

(B) Firing rates and theta phases of all odor-selective neurons. Odor-selective neurons were defined as neurons that had significant rate differences between

Odor-A and -B trials in odor-presenting periods (n = 152 units). Top, firing rates of odor-selective neurons during preferred- and nonpreferred-odor trials. Color

scale represents firing rate of each neuron (red represents max firing rate of each neuron and blue represents 0 Hz). Neurons were ordered by the time of their

peak firing rates. Third column shows segments with significantly higher discharge rates in odor-A (red) or odor-B (blue) trials (p < 0.05; permutation test). Right

column shows mean firing rates (thick lines) ± SD (dotted lines). Bottom, theta phases as a function of time during preferred- and nonpreferred-odor trials. Hue

(legend continued on next page)
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Figure 5. Pairwise Analysis of Temporal Compression of Spike Sequences in Single Theta Cycles

(A) Firing rates and theta phases of three representative neurons recorded simultaneously.

(B) Cross-correlations (right column) of the three pairs of neurons during the combination X-B-R trials (indicated with the asterisk in A). Left column, PSTHs of the

neurons. Center column, theta phase plots of the neurons as a function of time from stimulus onset. Each dot represents an action potential.

(C) Pairwise analysis of temporal compression of spike sequences in single theta cycles. Each dot represents a single neuronal pair in a single combination. x axis

shows peak distances of firing rates, and y axis shows peak shifts of CCGs (insets). Reference neurons for CCG were the ones whose PSTH peaks occurred

earlier than the others. The criteria for pair selection are described in STAR Methods (n = 4585 pairs; R2 = 0.18; p < 0.001).
1996; Dragoi and Buzsáki, 2006; Foster and Wilson, 2006;

Pfeiffer and Foster, 2013) illustrate this theory in the context of

spatial navigation. However, the hippocampus is also critical
represents theta phases (0�–360�), and brightness represents normalized firing r

phases in different odor trials (p < 0.05; permutation test; see STAR Methods). R

(C) Firing rates and theta phases of a representative choice-selective neuron.

(D) Firing rates and theta phases of all choice-selective neurons. Choice-selective

choice-L and -R trials in choice periods (n = 222 units).

(E) Firing rates and theta phases of a representative combination-selective neuro

higher firing rates and with significant phase differences during most-preferred c

(F) Firing rates and theta phases of all combination-selective neurons. Combinatio

in specific combinations in sound and odor presentation periods (n = 72 units).
for thememory of nonspatial event sequences in humans (Squire

and Zola-Morgan, 1991; Aggleton and Brown 1999; O’Reilly and

Rudy, 2001) and animals (Bunsey and Eichenbaum, 1996; Dusek
ates in each neuron. Third column shows segments with significantly different

ight column shows mean phases ± SD.

neurons were defined as neurons that had significant rate differences between

n. Lines above PSTHs and phase plots represent segments with significantly

ombination trials, respectively (p < 0.05; see STAR Methods).

n-selective neurons were defined as neurons that had significantly higher rates
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and Eichenbaum, 1997; Agster et al., 2002; Fortin et al., 2002);

thus, this theory has been extended to embrace map-like repre-

sentations of nonspatial information, including events and epi-

sodes (O’Keefe and Nadel, 1978; Eichenbaum, 2004; Buzsáki

and Moser, 2013). Physiological data have revealed that hippo-

campal single neurons can represent event components such

as olfactory (Eichenbaum et al., 1987; Wiener et al., 1989), audi-

tory (Sakurai, 1990, 1996), visual (Sakurai, 1996), and item (Wood

et al., 1999; Quiroga et al., 2005) information. Moreover, hippo-

campal neurons also display conjunctive representations of

event components, for example, item and space (Komorowski

et al., 2009; McKenzie et al., 2014; Wirth et al., 2003), item and

time (Naya and Suzuki, 2011), and item and sequence (Manns

et al., 2007a; Allen et al., 2016; Paz et al., 2010). Here, we demon-

strate the conjunctive representations of purely nonspatial infor-

mation in CA1. The key feature of our task is that the correct

choice is determined by a combination of two cues and cannot

be determined by either cue alone (Watanabe, 1986a, 1986b;

Sutherland and Rudy, 1989). Thus, a simple direct association

of either cue with the choice is not sufficient, but rather associa-

tionwith the cue combination is necessary. Many pyramidal neu-

rons showed representations of single cue combinations, which

can be dissociated from either sensory cue or choice action

alone. These combinatorial responses are not simple represen-

tations of multimodal sensory stimuli, since combination-spe-

cific neurons often showed sustained activity not only during

the selective period of simultaneous representation of sound

and odor cues (1.5–3 s) but also during the periods of presenta-

tions of only odor cues (3–4.5 s) (Figures 3A and 3B). Thus, our

results demonstrate that CA1 neurons represent the conjunctive

associations of multimodal sensory signals that link cue and

choice information.

Together with previous studies, our current results support

the idea that the role of the hippocampus is to organize ‘‘rela-

tional networks’’ of event components to subserve episodic

memory (Eichenbaum, 2004; Eichenbaum and Cohen, 2014).

This concept is consistent with the hippocampal cognitive map

hypothesis for spatial navigation, as routes in space can be

considered as relational networks of positional information

(Eichenbaum and Cohen, 2014).

The next question we addressed is how temporal order of

these spatial or nonspatial event components is physiologi-
Figure 6. Theta Sequences of Time and Combination Information

(A) Probability density of time information computed from simultaneously record

performed at every 5-ms time step with a 20-ms time window. Top, simultaneousl

of their firing rates from bottom to top. See also Figure S10A.

(B) Probability density of time information as a function of theta phase, estimated

odor presentation), 3�4.5 s (odor presentation only), and 4.5�6 s (choice). This

(C) Decoded time information (i.e., argument of themaximumof probability densiti

contained more than 10 pyramidal neurons that displayed phase precession we

(D) Probability densities of the time and combination information as functions o

correctly answered (left) and error (right) trials. This is a representative result com

that the sampled spikes and the priors for decoding were from the same type of

(E and F) Decoded probabilities of combination (E) and future choice (F) informa

contained more than 10 pyramidal neurons that displayed phase precession and

density functions were computed with spikes in the sampling period 3�4.5 s in sin

phases (E) and future choices on ascending phases (F) were estimated from ROIs

and h; ##p < 0.01 versus b and c; ANOVA and post hoc Tukey-Kramer test.
cally represented across the neuronal ensembles. During navi-

gation, spatial order is encoded by the theta phase information

of spiking activities. Place cell assemblies generate theta

sequences, which compressively represent sequences of past,

current, and future positions within theta cycles (Figure 8A;

O’Keefe and Recce, 1993; Skaggs et al., 1996; Dragoi and Buz-

sáki, 2006; Foster and Wilson, 2007). Previous theoretical and

experimental work has suggested that during nonspatial mem-

ories, the theta phases of spiking activity reflect the animal’s

behavioral state (Wallenstein and Hasselmo, 1997; Wallenstein

et al., 1998; Manns et al., 2007b). In this study, we demonstrate

that theta phase information of neuronal spiking also serves as

the essential substrate for the representation of the temporal

order of discrete events. In our experiments, event neurons dis-

charged with low firing rates on late phases of theta oscillation

before event onset (Figure 4; Figure S7). Following onset, we

observed transient phase precession followed by sustained

phase locking to early theta phases during the remainder of

the event period. Moreover, phase precession occurred only

for preferred events, while spikes for nonpreferred events were

restricted to late theta phases (Figure 4; Figure S7). This transient

phase precession and phase locking for preferred events

defined a temporal code for discrete event sequences (Fig-

ure 8B). Our results indicate that anticipated or nonpreferred in-

formation is maintained in late theta phases (ascending phases),

while confirmed information is shifted to and sustained in the

earlier phases (descending phases) for each event neuron,

thus representing temporal order of discrete episodic events

within single theta cycles (Figures 6 and 8). Our data support

the idea that a common computation framework underlies pro-

cessing of sequence information for spatial navigation and

episodic memory in the hippocampus (O’Keefe and Nadel,

1978; Eichenbaum, 2004; Buzsáki and Moser, 2013).

Sustained Rate Increase and Phase Locking in Discrete
Events
Themost commonpattern of neuronal activityweobservedduring

nonspatial discrete eventswas sustained rateelevation andphase

locking to early theta phases (Figures 2, 3, and 4). As discussed

above,wehypothesize that hippocampal neurons represent event

components for both spatial and nonspatial episodes (Eichen-

baum, 2004). In voluntary behaviors, such as spatial navigation
ed pyramidal cell activities in a single trial (bottom). Bayesian decoding was

y recorded LFP and units from 30 pyramidal neurons ordered by the peak times

in the sampling periods 0�1.5 s (sound presentation only), 1.5�3 s (sound and

is a representative result from a single session.

es) as a function of theta phase in single sessions (n = 24 sessions; sessions that

re selected).

f theta phases, estimated from spikes (sampled in time segment 3�4.5 s) in

puted from all trials in a single example session. ‘‘Same combinations’’ means

combination conditions. See also Figure S10B, for other ‘‘counterparts.’’

tion in correct and error trials (mean and SD; n = 17 sessions; sessions that

at least 2 error trials in each combination condition were selected). Probability

gle sessions. Decoded probabilities of combination conditions on descending

(indicated in insets) taken from the same dataset. **p < 0.01 versus b, c, d, e, f,
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Figure 8. Rate and Temporal Coding for

Continuous and Discrete Sequences

(A) For continuous space. Spatial sequences are

continuously represented in theta cycles (Dragoi

and Buzsáki, 2006).

(B) For discrete events. Event cells show sustained

rate increase during preferred events. These

neurons displayed transient theta phase preces-

sion at the onset of events, followed by phase

locking to the early theta phases during the pe-

riods of the events. Event sequences of past,

current, and future are thus discretely represented

in theta cycles.
(e.g., O’Keefe and Dostrovsky, 1971) or nonspatial self-sampling

behavior (e.g.,Eichenbaumetal., 1987), the timingofeventswould

be determined internally and subjectively across time and space.

This could explain why neuronal representations for positions

and events are continuous and gradual during these behaviors.

On the other hand, in our study, each event was explicitly deter-

minedbyexternal stimuli.Wehypothesize that thisexternaldiscre-

tization of event states induced the sustained neuronal activities of

event neurons, resulting in cell assemblies being ‘‘segmented’’

(Guptaetal.,2012)by the temporalstructureof the task (Figure3C).

Moreover, event order relationswere also fixedduring sameevent

segments, resulting in sustained phase locking of event cells

(Figure 4) and discrete theta sequences (Figure 6).

Then, what are the possible physiological mechanisms of

the transient phase precession and phase locking? In spatial

navigation, several theories have been proposed for continuous
Figure 7. Neuronal Representations When the Order of Cue Presentations Was Switched

(A) Schematic of the new task. The presentation orders of sound and odor cues were switched, without c

association (Figure 1B).

(B) Firing rates and theta phases of a representative odor-selective neuron in order-switched trials.

(C) Firing rates and theta phases of all odor-selective neurons in order-switched trials (n = 47 units). Top, firing

and nonpreferred-odor trials. Color scale represents firing rate of each neuron. Neurons were ordered by the

segments with significantly higher discharge rates in odor-A (red) or odor-B (blue) trials (p < 0.05; permutation

line) ± SD (dotted line). Bottom, theta phases as a function of time during preferred- and nonpreferred-odor

brightness represents normalized firing rates in each neuron. Third column shows segments with significantly

one side; permutation test). Right column shows mean phases ± SD.

(D) Firing rates and theta phases of a representative choice-selective neuron in order-switched trials.

(E) Firing rates and theta phases of all choice-selective neurons in order-switched trials (n = 46 units).

(F) Firing rates and theta phases of a representative combination-selective neuron in order-switched trials.

(G) Firing rates and theta phases of all combination-selective neurons in order-switched trials (n = 16 units).

(H) Pairwise analysis of temporal compression of spike sequence. Each dot represents a single neuronal pair in

of firing rates and y axis shows peak shifts of CCGs (see Figure 5C). Reference neurons for CCG were the one

(I and J) Decoded probabilities of combination (I) and future choice (J) information in order-switched trials (

functions were computed with spikes in the sampling period 3�4.5 s in single sessions. Estimation methods a

6F, respectively. **p < 0.01 versus b, c, d, e, f, and h; ##p < 0.01 versus b and c; ANOVA and post hoc Tuke

N

phaseprecession, includingdualoscillator

models (O’Keefe and Burgess, 2005;

O’Keefe andRecce, 1993) and soma-den-

dritic interference models (Kamondi et al.,

1998; Magee, 2001). The dual oscillator

models hypothesize that two sets of oscil-

latory inputs with slightly different fre-

quencies interfere to generate beat-like

fluctuations, which causes continuous

phase shifts of spiking activities on the
theta rhythm. However, this model cannot explain the transient

phase precession followed by sustained phase locking observed

in our experiments, because the model can only predict contin-

uousphase changes.On the other hand, the soma-dendritic inter-

ference model predicts that the interference of tonic somatic

theta-rhythm inhibitionand rampingup increasesofdendriticexci-

tation cause a gradual shift of spiking phases during theta (Harris

et al., 2002;Mehta et al., 2002;Harvey et al., 2009; Losonczy et al.,

2010). In our experiments with discrete event sequences, we as-

sume that event cells received sustained dendritic inputs during

preferred events, since auto-correlations of population vectors

showed segmented and sustainednetwork activities during single

events (Figure 3C). We hypothesize that the interference of so-

matic theta-rhythm inhibition and rectangular-type (instead of

ramp-up) dendritic excitation would explain the mechanisms of

transient phase precession and phase maintenance.
hanging the contingencies of combination-choice

rates of odor-selective neurons during preferred-

time of their peak firing rates. Third column shows

test). Right column shows mean firing rates (thick

trials. Hue represents theta phases (0�–360�), and
different phases in different odor trials. (p < 0.05 for

a single combination. x axis shows peak distances

s whose PSTH peaks were earlier than the others.

mean and SD; n = 6 sessions). Probability density

nd ROIs for (I) and (J) were same as Figures 6E and

y-Kramer test.
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We also observed that fast-spiking neurons showed a tran-

sient increase in firing rate at the onset of events with stimulus-

and choice-specificity (Figure S3). Since somatostatin and

parvalbumin interneurons strongly regulate the firing rates and

theta phase timing of pyramidal cells, respectively, in the CA1

(Royer et al., 2012; Amilhon et al., 2015), event-specific firing

of fast-spiking neurons could also contribute to phase preces-

sion of selected sets of pyramidal neurons (Buzsáki and Chro-

bak, 1995; Wallenstein and Hasselmo, 1997; Mann and Paulsen,

2007).

In conclusion, the results of this study suggest that a funda-

mental role of the hippocampus is to order both spatial and

nonspatial information across the axes of space and time. Infor-

mation of events or place is represented by the firing rate of event

cells or place cells, while temporal sequence information is car-

ried by the timing of spikes relative to the theta phase (Figure 8).

We propose that the theory of rate and temporal coding in the

hippocampus (Huxter et al., 2003; Foster andWilson, 2007; Buz-

sáki and Moser, 2013) is now a common conceptual framework

for both spatial navigation and episodic memory.
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Berényi, A., Somogyvári, Z., Nagy, A.J., Roux, L., Long, J.D., Fujisawa, S.,

Stark, E., Leonardo, A., Harris, T.D., and Buzsáki, G. (2014). Large-scale,
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generated cell assembly sequences in the rat hippocampus. Science 321,

1322–1327.

Paz, R., Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R., and Fried, I.

(2010). A neural substrate in the human hippocampus for linking successive

events. Proc. Natl. Acad. Sci. USA 107, 6046–6051.

Pfeiffer, B.E., and Foster, D.J. (2013). Hippocampal place-cell sequences

depict future paths to remembered goals. Nature 497, 74–79.

Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005). Invariant

visual representation by single neurons in the human brain. Nature 435,

1102–1107.

Royer, S., Zemelman, B.V., Losonczy, A., Kim, J., Chance, F., Magee, J.C.,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Four male Long-Evans rats (Long-Evans, 10�12 months old) were used in this study. All experimental protocols were approved by

the RIKEN Institutional Animal Care and Use Committee.

METHOD DETAILS

Behavioral task
Adult male rats were trained in the cue-combination task prior to surgery. It is a decision making task involving integrations of

sound and odor cues which are associated with the left or right spout levers under head-restrained condition (Figure 1; Figure S1;

Movie S1).

The task training was performed with the computer-controlled operant apparatus (Figure S1) which wasmodified from TaskForcer

(O’hara, Tokyo, Japan; Isomura et al., 2009; Kimura et al., 2012). The left and right spout levers were mounted on the liner-actuators

with stepper motors, so that the positions of the levers can be quickly and precisely controlled with pulse signals. Sound stimuli

were provided by the speaker placed in front of the rat. Odor stimuli was provided from the custom-made nose cover on air

flow (�0.5 l/min), which onset and offset were controlled by solenoid valves. The system was automatically controlled by the

custom-written LabVIEW (National Instruments, Austin, TX) programs during the trials. For each rat, same sets of sound cues

(two were selected from 4 kHz sine wave, 11 kHz sine wave, mixture of 11 kHz sine wave & 11.5 kHz rectangular waves, or white

noise) and odor cues (two were selected from hexyl acetate, (-)-menthone, or cuminaldehyde) were used for all sessions. Prior to

starting training of the task, a sliding head attachment was surgically attached to the skull (Isomura et al., 2009; Kimura et al.,

2012) and ground and reference screws for electrophysiology were implanted above the cerebellum.

A task trial was initiated from a sound cue, which was presented during the period 0–3.0 s from a trial onset, and then an odor cure

was presented during the period 1.5–4.5 s (Figure 1). After the offset of the odor presentation, the left and right spout levers moved to

accessible position to the rats so that they can make a choice action, that is, pulling left or right lever. If the choice was correct, water
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drops (25 ml) were delivered from the tip of the lever (Kimura et al., 2012). Inter-trial intervals were�15 s after correctly answered trials

and 40�60 s after error trials. The rats performed 100�200 trials in a single session in a day. The rats were deprived of drinking water

in their home cages, though access to foodwas not restricted. Sufficient water was provided in the task as a reward and also one hour

after the task.

Training periods of rats for this task were 7�9 weeks. In the first stages of leaning, the odor cues were randomly presented in each

trial whereas the auditory cue was fixed one type of sound (i.e., odor-discrimination task in one sound context; �1 week). In the

second stage, the auditory cue was now fixed to the other type of sound (i.e., reverse leaning of odor-discrimination task in the other

sound context; �1 week). In the third stage, we repeat this process but gradually decrease the numbers of sessions between rever-

sals of sound cues (�2 weeks). In the fourth stage, we introduced sound reversal within a single session. We gradually increase the

frequency of sound reversals in a session (�2weeks). In the last stage, presentations of sound and odor cueswere totally randomized

(�2 weeks). Rats with performances better than 80%correct choices for each combination condition in a single session were chosen

for surgery for chronic recording.

Surgery and recording
Four rats (rat-id: t14, t24, t27, and t29) were implanted with silicon probes for chronic recording of neuronal activities during the task

behavior. General surgical procedures for chronic recordings have been described in the previous paper (Fujisawa et al., 2008). In this

study, Buzsaki64 or Buzsaki64sp types of silicon probes (NeuroNexus, Ann Arbor, MI) were used, which consisted of 8 or 6 shanks

(200-mm shank separation) and each shank had 8 or 10 recording sites (160 mm2 each site; �1 MU impedance), respectively, stag-

gered to provide a two-dimensional arrangement (20 mmvertical separation; see, Figure S1D inset). The rats were implantedwith 1�4

silicon probes in the CA1 (rat-t14 with 1 probe at AP =�3.7mm,ML = 2.7mm; rat-t24 and t27 with 2 probes at AP =�3.7 mm,ML = ±

2.7 mm; rat-t29 with 4 probes at AP =�3.0 mm,ML = ± 2.0mm& AP =�4.2 mm,ML = ± 3.4mm; The shanks were aligned parallel to

the septotemporal axis of the hippocampus, i.e., 45 degrees parasagittal). The silicon probe was attached to amicromanipulator and

moved gradually to its desired depth position. During the recording sessions, the wide-band neurophysiological signals were ac-

quired continuously at 20 kHz on a 256-channel Amplipex systems (KJE-1001, Amplipex Ltd, Hungary; Berényi et al., 2014). The

wide-band signal was downsampled to 1.25 kHz and used as the local field potential (LFP) signal. Spike sorting was performed semi-

automatically, using KlustaKwik2 (Kadir et al., 2014), followed by manual adjustment of the clusters. The probes was moved by

experimenter with 30�60 mm until it reached the pyramidal cell layer. After it reached the layer, the probe was stopped or moved

with less than 15 mm for maximizing the numbers of recording units. Even when the experimenter did not move the probe, the

tips of the probes spontaneously moved slightly between sessions, which was inferred from the small differences of the waveforms

of units across different sessions. We cannot exclude the possibility that some neurons recorded in different sessions were identical

because spikes from sessions recorded on different days were clustered separately. Thus, the total number of independent neurons

could be overestimated (Mizuseki et al., 2009).

Data analysis
All analyses after spike sortingwere performed using custom-written tools inMATLABwith Signal-processing and Statistic toolboxes

(Mathworks, Natick, MA). The Circular Statistics Toolbox (Berens, 2009) was used for circular analyses.

Permutation tests (two conditions)

Permutation tests were used to identify conditional differences in firing rates or firing phases in the trial periods (Figures 2, 3, 4, and 7;

Figures S3, S6, S9, and S11). Detailed information of this method is described in Figure S2 and the previous papers (Fujisawa et al.,

2008; Amarasingham et al., 2012).

The PSTHwas estimated from the onset of sound stimulus in each condition, (for example, Odor A andB conditions; lA(t) and lB(t)),

with smoothing using Gaussian kernel function of bandwidth s = 150ms. Then, the difference of PSTHs, D0ðtÞ= lAðtÞ � lBðtÞ were

computed. The Odor A/B assignments to the labels of sessions were randomly permuted, and the PSTHs and the statistic D1(t) under

the permuted labels were re-estimated. This process was repeated R times to obtain the statistic from the original data, D0(x), along

with the statistic from resample data, D1(t),.,DR(t). Using this resampled (shuffled) dataset, pointwise p value (5% for both side, i.e.,

2.5% for upper and lower) at each point was computed. To avoid multiple comparison issues, we also computed the global 5%

bands (Figure S2; Fujisawa et al., 2008).

To assess conditional differences of spiking phases as a function of time in each unit, the difference of mean spiking phases in each

time bin was computed as the same way (p < 0.05 for one side, since there is no directionality for phase difference).

Permutation tests (four conditions)

When we assessed the differences of the firing rates among four combination conditions, the preferences of combinations for each

cells were ordered based on their peak firing rates in each combination condition, that is, most-, 2nd-most-, 3rd-most-, and least-

preferred combination conditions. Then, permutation tests described above were applied to compare most- versus 2nd-most-,

most- versus 3rd-most-, and most- versus least-preferred combination trials. We determined that the firing rates in most-preferred
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was significantly highest if all of the three comparisons had significant differences. Bonferroni correction was applied for each com-

parison, i.e., p < 0.05/3 = 0.0167 for each permutation test.

Assessment of differences of spiking phases as a function of time in four combination conditions for each unit was performed as

the same way.

Population vector analysis

First, the normalized PSTH for each neuron was computed in each combination condition. Then, the population vector matrix of all

pyramidal neurons (i.e., a single row vector represents a normalized PSTH in a single neuron, and a column vector represents a pop-

ulation vector of all neurons at a single time bin) was constructed in each combination condition. Finally, the autocorrelation of the

population vector matrix in each combination condition was computed (Figure 3C). Here, the element at point (i, j) represents the

Pearson’s correlation coefficient between the population vectors computed at i-th and j-th time bin in the trials (Gothard et al.,

1996). Cross-correlations of the population vectors were also computed in the same way. The detailed procedures of computation

is also explained in Figure S5C.

Analysis of LFP

For the theta phase extraction, LFPs in the CA1 pyramidal cell layers (which were determined by the amplitudes of ripples and the

polarities of sharp-waves; Mizuseki et al., 2011) were filtered with a Butterworth filter with pass-band range 4-10 Hz. Instantaneous

theta phases were estimated by Hilbert transformation of the filtered signals.

The presence of theta phase precession was assessed in each neuron in each combination condition, with using following three

criteria (Figure S6C); (i) there was a significant liner-circular correlation (p < 0.01) between time and theta phases, in the period be-

tween�1.5 s to 1.5 s of the time of the peak firing rate, (ii) the phases crossed 180� (troughs of theta) in the period between�1.5 s to

1.5 s of peak time, and (iii) the phase shift was more than 120�.
Pairwise analysis of theta sequences

Pairwise analysis of theta sequences was applied to the cell pairs in single conditions (Figure 5C). The cell pairs and conditions were

selected with following criteria; (i) both neurons had phase precessions in the combination condition, and (ii) the cross-correlogram

(CCG) of the cell pair in the combination condition had significant theta modulation. Significance of theta modulation of CCG was

assessed as follows. First, we computed the Fourier power of CCG of a cell pair. Second, the trial labels of the raster plot of each

cell were shuffled (i.e., shift predictor), in order to break precise temporal relationships of spikes of cell pairs with preserving their

PSTHs. Then we computed Fourier power of CCG with using the surrogate spike trains. We repeated to make surrogate CCGs

for 200 times. If the theta-band power of original CCG was higher than 5% top of those of surrogate CCGs, we considered that theta

modulation is significant (p < 0.05).

Reconstruction of time and combination from neuronal activities

A memoryless Bayesian decoding algorithm was used to estimate the information of time and combination of a task trial which the

animal was engaged in, based on the combination-specific PSTHs and the spike trains (Figure 6; Figure S10; Davidson et al., 2009;

Feng et al., 2015; Zhang et al., 1998; Brown et al., 1998). Based on the Bayes’ theory, the posterior probability of time from a trial onset

(time) and combination conditions (comb) given spike trains from single neurons (spikes) was estimated as:

Pðtime; comb j spikesÞ=Pðspikes j time; combÞ,Pðtime; combÞ
PðspikesÞ

The prior probability was estimated under the assumption of Poisson firing statistics and independent rates, as:

Pðspikes j time; combÞ=
YN
i = 1

Pðni j time; combÞ=
YN
i = 1

ðtfiðtime; combÞÞni
ni!

expð � tfiðtime; combÞÞ

where t is the time window of sampling spike trains (20ms, moving with 5ms step, was used in this study), fiðtime; combÞ is the

PSTH of i-th unit in each combination condition (e.g., Figure S10A), ni is the number of spikes of i-th unit in the time window, and

N is the total number of units. Combining these equations, the posterior probability of the time and combination was computed as:

Pðtime; comb j spikesÞ=C$Pðtime; combÞ
 YN

i = 1

ðtfiðtime; combÞÞni
ni!

!
exp

 
� t

XN
i = 1

fiðtime; combÞ
!

where C is a normalization factor which depends on t and the numbers of spikes of each neuron (Zhang et al., 1998). To construct

theta sequences, decoded probabilities over trials were aligned to the theta phases calculated from concurrently recorded LFP and

were averaged (Davidson et al., 2009; Feng et al., 2015).

When only the information of time was reconstructed (Figures 6A–6C), the posterior probability of time in which the combination

parameters were conditioned, i.e., ðtime j spikes; combÞ, was estimated. In Figure 6C, the most probable time was taken as the re-

constructed time, i.e., bt = argmax
time

Pðtime j spikes; combÞ, in order to show session-to-session variability.
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For these analyses, we selected the sessions in which more than 10 simultaneously-recorded pyramidal neurons which had phase

precession in at least one single combination condition (n = 24 sessions). For comparison correct and error trials (Figures 7E and 7F),

we selected the sessions had more than 10 pyramidal neurons with phase precession and at least 2 error trials in each combination

condition (n = 17 sessions).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in MATLAB. Details of statistical analyses were described in METHOD DETAILS section.
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